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A Lax–Wendroff-like finite-difference representation for the transport of multiple
chemical components is formulated via integer variables. This representation en-
sures exactly the desired conservation laws at all times and achieves low numerical
diffusivity. The algorithm requires less memory as compared to its floating-point pre-
decessor, hencemuchless than standard lattice gas and lattice Boltzmann methods to
date. Analytical and numerical studies demonstrate that the algorithm is stable under
subsonic conditions. c© 1999 Academic Press

1. INTRODUCTION

The importance of computation with integer representations has become rapidly rec-
ognized since the emergence of lattice gas (LG) and lattice Boltzmann (LB) methods for
computational fluid dynamics [1–8]. The most obvious reasons for this include less compu-
tational memory requirements and better consistency with modern computer architectures.
More importantly, such representations are free of roundoff errors, so that fundamental con-
servation laws can be exactly enforced at all times. This is highly desirable in circumstances
such as stiff and very long time numerical computations, in which error accumulation may
severely affect the quality of the results. We are particularly interested in the simulation
of reacting flows, possibly involving a significant number of chemical components, each
at a different density and evolving on disparate spatial and time scales. As a result, exact
preservation of the conservation properties becomes crucial in order to produce an accurate
simulation [9].
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Reacting flow dynamics consists of three fundamental processes. These are: (1) reac-
tion, in which some chemical components are turned into other chemical components;
(2) mechanical feedback, in which the local fluid properties are altered due to heat release
or consumption as a result of reactions; and (3) transport, in which these components are
advected from place to place by the flow. In this paper, however, we only address the spe-
cific issue of how to simulate the transport of multiple chemical components: reaction and
mechanical feedback will be presented in future work. Besides reacting flows, the present
algorithm can, and already has been used for the numerical simulations of high-Reynolds
flows within the framework ofk− ε turbulence models, in which the turbulent kinetic energy
k and the turbulent dissipationε evolve according to passive-scalar-like dynamic equations
plus local source terms which are readily incorporated within the formalism described in
this work [10].

The paper is organized as follows. In the next section, we present a finite-difference
scheme for solving the multiple component transport process (see Eq. (1) below). We
provide a detailed stability analysis for such a scheme in the Appendix. In Section 3,
we describe how to convert the scheme into an integer representation while satisfying all
necessary conservation requirements. In addition, we discuss some possible methods to
ensure the positivity of the density distribution functions. In Section 4, we present results
of direct numerical simulations for selected test cases demonstrating the accuracy of the
method. Finally, a discussion of the results is presented.

2. LAX–WENDROFF DISCRETIZATION SCHEME

Mathematically, the transport problem is defined by a set of passive scalar equations in
which the motion of the various components is carried by a prescribed fluid velocity field,

∂tρs +∇ · (ρsu) =∇ · [Dρ∇(ρs/ρ)], (1)

whereρs≡ ρs(x, t) is the local mass density of thesth component at(x, t); s= 1, . . . , S.
The fluid velocity,u is a prescribed function of space and time. The term on the right-hand
side of Eq. (1) describes the diffusion of thesth component with diffusivity coefficientD.
For simplicity we shall assumeD is the same for all species. The form of this equation is
consistent with the continuity equation for the overall mass density,ρ(x, t)≡ ∑S

s=1 ρs(x, t),

∂tρ +∇ · (ρu) = 0 (2)

because the right-hand side of (1) vanishes upon summing over all components. One of the
most popular finite difference schemes for approximating an advection process, ignoring
the diffusion effect, is the Lax scheme [11]. In ad-dimensional Cartesian mesh spanned
by integerslα along directionxα according tox= ∑d

α=1 lα1α x̂α, the Lax scheme may be
represented by the difference form

ρs(x, t +1t) = 1

2

∑
α

[(
1

d
+U−α

)
ρs(x−1αα̂, t)+

(
1

d
−U+α

)
ρs(x+1αα̂, t)

]
, (3)

where the subindexα(=x, y, z) runs over the Cartesian components and ˆα≡ x̂α. U±α ≡
uα(x±1αα̂, t)(1t/1α) is the Courant number in theαth dimension.
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A natural way for dealing with the diffusion term on the right-hand side of Eq. (1)
is to use the centered-difference approach. As detailed in the sequel, this would lead to
numerical instability because the right-hand-side of Eq. (1) contains a hidden convective
component. Consequently, an alternative formulation is called for. To this purpose, we
rewrite the diffusion term in the form

∇ · [Dρ∇(ρs/ρ)] = −∇ ·
[(

D
∇ρ
ρ

)
ρs

]
+∇ · [D∇ρs]

= −∇ ·
[(

D
∇ρ
ρ

)
ρs

]
+∇ · [(∇D)ρs] + D∇2ρs − (∇2D)ρs (4)

so that the third term on the right-hand side in the above expression becomes the ordinary
diffusion term, while the first two terms can be combined and together act like an effective
advection (reminiscent of the so-called Fick’s law) with the velocity,

uh = D
∇ρ
ρ
−∇D. (5)

Recognizing the advection nature of this combined term, we can immediately understand
why the naive approach suggested above does not work: it is known that a centered-
difference representation for advection as combined with explicit first order time marching
is unconditionally unstable [11, 12]. Equation (1) can be cast into a new form,

∂tρs +∇ · (ρsũ) = D∇2ρs − (∇2D)ρs, (6)

whereũ≡ u+uh is now the overall generalized advection velocity. Both the term involving
the Laplacian of the diffusivity in Eq. (6) and the second term in the expression for the
additional effective velocity, Eq. (5), vanish in the case of constant molecular diffusivity,D.

The Lax finite-difference approximation for advection can still be adopted, except that
U±α is now understood to be the generalizedũ as opposed to the original fluid velocity. The
centered difference scheme can be safely used for approximating the regular diffusion term,

D∇2ρs ≈
∑
α

D

∆2
α

[ρs(x+1αα̂, t)− 2ρs(x, t)+ ρs(x−1αα̂, t)] (7)

as well as the term involving the Laplacian of the diffusivity.
As it is well known, the Lax scheme is stable as long as the extended CFL (Courant–

Friedrichs–Lewy) condition is satisfied,
∑d

α=1(uα(x, t)1t/1α)
2≤ 1/d [11, 13]. However,

it generates a numerical diffusion of the form

Dn,α = 1

2d

[
1− dŨ2

α

]12
α

1t
, (8)

whereŨα ≡ ũα(1t/1α) is the local Courant number along directionα. This indicates that
the numerical diffusivity vanishes only when the magnitude of the Courant number takes the
value 1/d. For a given practical resolution, such numerical diffusion is often unacceptable,
and we must seek a way to eliminate it. Based on direct analysis, it can be shown that one
way to remove it is to simply introduce an artificial negative diffusion of the same form
as in (8) but with an opposite sign. This is equivalent to the Lax–Wendroff scheme [11].
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It is quite interesting to realize (see details in the Appendix) that such a modification,
together with considerations for cross-product effects in higher dimensions, removes the
leading order numerical diffusion in the standard Lax scheme and yet it maintains stability.
Obviously we can discretize this additional term via a centered difference approximation.
After combining all these considerations, we obtain a generalized Lax-like scheme for the
multiple component transport process, and the final form of the finite-difference equation
becomes

ρs(x, t +1t) = 1

2

∑
α

[(
1

d
+ Ũ−α

)
ρs(x−1αα̂, t)+

(
1

d
− Ũ+α

)
ρs(x+1αα̂, t)

]
+
∑
α

[ρs(x+1αα̂, t)− 2ρs(x, t)+ ρs(x−1αα̂, t)]Dα

−
∑
α

[D(x+1αα̂, t)− 2D(x, t)+ D(x−1αα̂, t)]
1t

12
α

ρs(x, t)

− 1

8

∑
α,β 6=α
{Ũ−αŨβ(x−1αα̂, t)[ρs(x−1αα̂ +1ββ̂, t)

− ρs(x−1αα̂ −1ββ̂, t)] − Ũ+αŨβ(x+1αα̂, t)[ρs(x+1αα̂ +1ββ̂, t)

− ρs(x+1αα̂ −1ββ̂, t)]}, (9)

where

Ũ±α = Ũα(x±1αα̂, t)

and

Dα =
[

D
1t

12
α

− 1

2d

(
1− d(Ũα)

2
)]
.

The terms in the double summations are for the purpose of eliminating cross-product errors
whend> 1. Note that while the discretization of the diffusion term (terms on the second line
above) involves a combination of the molecular and numerical diffusivities, the Laplacian
of the diffusion (terms on the third line above) involves the molecular diffusiononly. For the
remaining sections of this paper, we adopt the simplifying assumption that the molecular
diffusion, D, is constant.

Before moving further, it is worth mentioning that the stability problem discussed in
the present section would not arise had we chosen the mass fractionsYs= ρs/ρ instead
of the partial densitiesρs, as dependent variables. This is because in the mass-fraction
representation, the right-hand-side of Eq. (1) is purely diffusive and can be harmlessly
center-differenced.

However, since our highlight is the use of integers, it appears much more natural and
convenient to use densities as dependent variables than mass fractions since the latter
are intrinsically fractional numbers. Hence, the idea is to prioritize and leverage exact
conservativeness over straightforward stability. Note that in light of the stability analysis
presented in the Appendix, this choice does not implyanysacrifice in terms of numerical
stability. All it takes is a different, slightly more elaborated, formulation of the problem,
namely the one detailed in the present section. This is a mostly welcome and non-trivial result
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(in more than one dimension) as it permits us to do away with implicit time marching, hence
preserve a basic asset of lattice methods, namely high amenability to parallel computing.

3. INTEGER REALIZATION AND EXACT CONSERVATION LAWS

The Lax–Wendroff scheme satisfies mass conservation for each chemical component up
to the precision of the representation of the component densities. The main goal of the
integer formulation is to make this conservation exact. For the purpose of the consequent
integer formulation, it is advantageous to take the following perspective. Equation (9) can be
viewed as a result of a two-step partitioning process as described below: During each time
t , the first step is to split the component density,ρs(x, t), at the node into 2d+ 1 directional
densities, each associated with one of the 2d+ 1 nearest-neighbor nodes (including itself)
on a given Cartesian mesh. This splitting step can be represented as

ρs(x, t)→
+1∑

l=−1

∑
α

ρl
s,α(x, t)+ ρ0

s(x, t), (10)

where thel = 0 has been explicitly singled out and is not included in the first summation,
i.e.,

∑+1
l=−1

∑
α 1= 2d. Here

ρl
s,α(x, t) = Pl

α(x, t)ρs(x, t)+ Ql
α(x, t) (11)

and

ρ0
s(x, t) = P0(x, t)ρs(x, t)+ Q0(x, t). (12)

Such a partition has been designed to satisfy mass conservation, i.e., the sign→ becomes
=, if the weights obey the normalization condition,

+1∑
l=−1

∑
α

Pl
α(x, t)+ P0(x, t) = 1,

and

+1∑
l=−1

∑
α

Ql
α(x, t)+ Q0(x, t) = 0.

For the Lax–Wendroff scheme given in the previous section, these weights are specifically
defined as

Pl
α(x, t) =

1

2

[
1

d
+ l Ũα(x, t)

]
Dα(x, t) (13)

P0(x, t) = −2
∑
α

Dα(x, t) (14)

Ql
α(x, t) = −

l

8
Ũα(x, t)

∑
β 6=α

Ũβ(x, t)[ρs(x+1ββ̂, t)− ρs(x−1ββ̂, t)] (15)
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and

Q0(x, t) = 0 (16)

which can be directly verified as satisfying the normalization condition.
The second step in the scheme is to move the directional densities (11) and (12) con-

structed above to each of their own corresponding neighboring nodes. This is the advection
step. That is, we define new quantities, ¯ρs, such that

ρ−l
s,α(x, t) = ρl

s,α(x− l1αα̂, t) (17)

and

ρ−0
s (x, t) = ρ0

s(x, t) (18)

so that the new density distribution for each component at the next time step is a result of
the summation of the advected ¯ρs,

ρs(x, t + 1) =
+1∑

l=−1

∑
α

ρ−l
s,α(x, t)+ ρ−0

s (x, t). (19)

Because this step is simply a spatial relocation of the directional densities, it obviously
conserves the global mass in the system for each component.

Using the above two-step partitioning point of view, we can easily construct an integer
realization of the transport scheme. In an integer formalism, each component densityρs(x, t)
is represented by an integer, which can directly be interpreted as a number of “macro-
molecules” of the given species, and for the sake of simplicity, we rename this density as
Ns(x, t). In order to ensure exact mass conservation, the splitting step in the above must be
implemented carefully. First we integerizeρl

s,α(x, t) andρ0
s(x, t) as

Nl
s,α(x, t) = Int

[
ρl

s,α(x, t)+ randl
s,α(x, t)

]
, (20)

where the operator, Int, truncates off the values to the right of the decimal point. Also,
randl

s,α(x, t) is a random number uniformly distributed between 0 and 1, with
〈randl

s,α(x, t)〉=0.5. Note that the quantityρl
s,α(x, t) is represented and computed in real

numbers as defined previously according to Eq. (11). This integer operation achieves the
real number accuracy in a statistical sense, i.e.,〈Nl

s,α(x, t)〉= ρl
s,α(x, t). Furthermore, in-

stead of using Eq. (12), the integerN0
s (x, t) is computed in the following way to enforce

the mass conservation explicitly,

N0
s (x, t) = Ns(x, t)−

+1∑
l=−1

∑
α

Nl
s,α(x, t), (21)

i.e., all of the remaining density after the advected components are integerized is placed in
the original location.

The advection step is unchanged except for replacingρs with Ns in Eqs. (17), (18),
and (19).

It can be seen that the integer process defined above enforces exact conservation laws at
all times and realizes the same averaged transport evolution equations given by Eq. (9) in
a statistically averaged sense. This is true because the transport equations are linear.
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4. NUMERICAL SIMULATIONS

The present algorithm has been implemented with 16-bit integer(0≤ Ns≤ 216− 1=
65,535) representation and tested on the following two-dimensional cases:

1. Purely diffusive flow (no advection)
2. Uniform advection-diffusion (uniform flow)
3. Poiseuille advection-diffusion flow (Taylor hydrodynamic dispersion).

In all cases the species densities are initialized according to a Gaussian profile superim-
posed on an uniform background

ρs(x, 0) = bs + as exp

(
−r 2

s

2

)
, s= 0, 1, (22)

wherer 2
s = ((x − Xs)/σxs)

2 + ((y − Ys)/σys)
2, andXs,Ys, σxs, andσys are the centers

and half-widths of the Gaussian profile, respectively. This is a convenient choice in order to
measure advection and diffusion in terms of translation and spreading of the initial profile
as it evolves in time. The parameters of the Gaussian profile and background are chosen
in such a way as to ensure that the total densityρ= ρ0 + ρ1 is uniform in space. Note
that since the diffusivities are constants, this impliesuh= 0 throughout all test cases (see
Eq. (5)). The boundary conditions are as follows: periodic on inlet/oulet and no species
flow at top/bottom walls.

4.1. Purely Diffusive Flow (u = 0, D = const)

The main aim of these simulations is to demonstrate that our numerical scheme has
virtually no numerical diffusion.

To this purpose, three sets of simulations at high(D= 0.1), low (D= 0.001), and no-
diffusivity at all (D= 0) have been performed.

The simulations are run on a 100× 50 lattice. The other parameters are set as follows:
σ0x = σ1x = σ0y = σ1y = 5, X0 = X1 = 50, Y0 = Y1 = 25, b0 = 32,000, b1 = 320,
a0=−3200,a1= 3200. This corresponds toN0= 159,494,235 particles in the majority
species andN1= 2,101,844 particles in the minority one. Both numbers areexactlycon-
served throughout the simulation.

4.1.1. u= 0, D= 0

The mid-plane(y= 25) densitiesρ0, ρ1 as a function of the streamwise coordinatex
at timet = 0, 100, 200, 300, 400, 500 are shown in Figs. 1 and 2. From these figures we
see that the initial profiles are basically unperturbed as time unfolds. This is exactly what
they should do in the absence of numerical diffusion, since the physical diffusivity of both
species is set to zero.

4.1.2. u= 0, D= 0.001

The same test withD= 0.001 is presented in Figs. 3 and 4, from which a small broaden-
ing of the initial profiles is visible. A quantitative assessment of this broadening is shown in
Fig. 5, where the squared variance of the density profileσ 2= ∑l pl [(xl − x̄)2+ (yl − ȳ)2],
is represented as a function of time for both species. In this equationpl = ρl/

∑
l ρl ,

ρl ≡ ρ(xl , yl ) andx̄= ∑l pl xl , ȳ= ∑l pl yl are the average positions associated with the
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FIG. 1. Mid-plane density of species zero as a function ofx att = 0, 100, 200, 300, 400, 500, forU0= 0, D= 0.
Here and throughout, time is given in lattice time-steps. Note that all six curves collapse into a single one, showing
that the system does not move away from the initial condition.

FIG. 2. Mid-plane density of species one as a function ofx att = 0, 100, 200, 300, 400, 500 forU0= 0, D= 0.
Note that all six curves collapse into a single one since the system does not move from the initial condition.
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FIG. 3. Mid-plane density of species zero as a function ofx for t = 100, 200, 300, 400, 500, forU0= 0,
D= 0.001. Note the mild broadening of the profiles as time unfolds, due to non-zero diffusivity.

FIG. 4. Mid-plane density of species one as a function ofx for t = 100, 200, 300, 400, 500, forU0= 0,
D= 0.001.
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FIG. 5. Variance squared of species zero and one as a function of time. The straight short-dashed line represents
the analytical resultD= 0.001.

species densities. The discrete indexl runs over the two-dimensional lattice and the species
indexs is dropped for simplicity.

The diffusivity is measured in the numerical experiment according to the standard relation
De(t)= σ 2(t)/4t , the expectation being that if numerical diffusion is negligible,De(t)
should match exactly the input value of physical diffusivityD.

This expectation is basically confirmed by the results shown in Fig. 5 (the short-dashed
line denotes the analytical valueD= 0.001). The quantitative values from a linear best-
fit to the data giveD= 0.995 10−3 for the bulk species (species 0) andD= 0.974 10−3

for the tracer species (species 1) which agree well with the analytical value. We note that
the estimate of the diffusivity on the tracer species is clearly affected by statistical noise.
This is not surprising due to the small number of integer particles used to represent the
minority species. In fact, the same estimate on the majority species is much less exposed to
fluctuations.

Similar tests on the high diffusivity case(D= 0.1) provide basically the same sort of
quantitative agreement betweenDe andD.

We conclude that the numerical scheme is indeed virtually free from numerical diffusion
effects.

4.2. Uniform Flow (u = const,D = const)

The next set of simulations refers to the case of a Gaussian profile moving in an uniform
flow. The goal is to show that the low-diffusivity property of this scheme is still preserved
under convective flow, and also to gain insight into the dispersive effects associated with
the numerical discretization.

We have performed a series of simulations with various values of the speedu=U0x̂ and
two different molecular diffusion coefficientsD= 0.1 andD= 0.0. The other parameters are
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FIG. 6. Mid-plane density of species one as a function ofx for t = 0, 500, 1000, forU0= 0.1, D= 0.1. Flow
is moving to the right.

set as follows: grid 200× 25,b0= 32000, b1= 320,a0=−3200,a1= 3200, σ0x = σ1x = 5,
σ0y = σ1y = 5, X0 = X1 = 50,Y0 = Y1 = 12. This corresponds toN0 = 153,104,318,
N1= 2,020,795.

4.2.1. U0= 0.1, D= 0.1

Indeed, the diffusive properties of the algorithm stay basically unchanged, as they should
on account of Galilean invariance. This is shown in Figs. 6–7, which refer to the density
profiles of both species att = 0, 500, 1000 for the caseU0= 0.1, D= 0.1. From these figures,
we observe that the profiles advect and diffuse at the correct rates, as quantitatively shown in
Figs. 8 and 9 reporting the mean positions alongx andy, as well as the variances squared, as a
function of time. As expected, the mean positions and variances obey the theoretical relation
x̄s(t)− x̄s(0)=U0t, ȳs(t)− ȳs(0)= 0, s= 0, 1, andσ 2

s (t)− σ 2
s (0)= 4Dt, s= 0, 1.

4.2.2. U0= 0.1, D= 0

As physical diffusion is lowered, dispersive effects start to appear upstream of the
Gaussian profile. These are evidenced in Figs. 10–11 which refer to the extreme case
of zero physical diffusion (D= 0) and flow speedU0= 0.1. Dispersion materializes in the
form of density ripples on the rear side of the moving profile, the well-known Gibbs phe-
nomenon. These ripples grow with increasing flow speed and smear out with increasing
physical diffusivity. The control parameter governing the intensity of these ripples is the
cell Peclet NumberPe1= U1x

D , which in lattice units (1x= 1) is simply the ratioU/D.
Our numerical experiments indicate that the ripples amplitude does not take on signifi-

cant values for cell-Peclet numbers below approximately 10. HigherPe1 result in sustained
growth of the ripple amplitudes up to the point where the minority species is driven to
negative values. At this stage, an underflow control mechanism is required. Since the main
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FIG. 7. Mid-plane density of species one as a function ofx at t = 0, 500, 1000, forU0= 0.1, D= 0.1. The
flow is moving rightwards.

FIG. 8. Average position alongx andy of species zero as a function of time forU = 0.1, D= 0.1.
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FIG. 9. Variance squared of species zero and one as a function of time forU0= 0.1, D= 0.1.

FIG. 10. Mid-plane density of species zero as a function ofx for t = 0, 500, 1000, forU0= 0.1, D= 0. The
flow is moving to the right.
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FIG. 11. Mid-plane density of species one as a function ofx for t = 0, 500, 1000, forU0= 0.1, D= 0. The
flow is moving to the right.

purpose of this work is to analyze the numerical properties of the “plain” integer Lax–
Wendroff scheme, to date, the underflow control consists in simply resetting negative values
to zero. Since this breaks particle conservation, future work shall be devoted to the develop-
ment of more sophisticated dispersion-limiters, possibly in the direction of monotonicity-
preserving schemes. For instance, preliminary tests show that by prefactoring the Wendroff
term (8) with a disposable parameter 0<θ <1, mass positivity can be ensured without
violating exact conservation. By so doing, further stability gains have been observed in
numerical simulations ofk− ε turbulence models [10].

4.3. Taylor’s Hydrodynamic Dispersion

As a third test case we consider the tracer diffusion and hydrodynamic dispersion in a
Poiseuille velocity profile (Taylor hydrodynamic dispersion).

Here, besides molecular diffusion and convective motion, the species undergo hydrody-
namic dispersion on account of the stretching effect exerted by the sheared flow config-
uration. The aim of this section is to test whether our integer scheme correctly captures
this hydrodynamic stretch mechanism. We have performed a series of simulations with
various values of the centerline speedU0 and two different molecular diffusion coefficients
D= 0.01 andD= 0.001. The other parameters are set as follows: grid 200× 24, b0=
32000, b1= 3200,a0=−16000,a1= 16000,σ0x = σ1x = 5,σ0y= σ1y= 50,X0= X1= 50,
Y0=Y1= 12. The total number of particles isN0= 148,831,768,N1= 20,136,193.

4.3.1. Longitudinal Dispersion Coefficient

As a quantitative test, we measure the longitudinal dispersion coefficientDL defined as the
variance of the species density along the streaming directionx, DL(t)=

∑
l (x1− x̄)2 pl/2t
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FIG. 12. Relative dispersionδL as a function of the Peclet number, forD= 0.01 andD= 0.001. Due to the
definition ofδL ≡ DL/D− 1, the theoretical lines are coincident.

where, as usual,̄x is the mean position alongx. Current literature (e.g., see [14]) yields

DL = D

(
1+ Pe2

0

470

)
, (23)

wherePe0=U0H/D is the Peclet number computed with the maximum flow speedU0

and H = 24 is the channel width. The quadratic factor in Eq. (23) reflects the effect of
hydrodynamic stretch produced by the sheared flow configuration. This term is dominant
for Pe0>Pec =

√
470∼ 23, whereas below this value molecular diffusion prevails.

The numerical comparison is best organised in terms of the relative dispersionδL =
(DL − D)/D, which, according to (23) should scale likePe2

0/470 independent of the molec-
ular diffusivity D. The results are summarized in Fig. 12, whereδL as obtained by sim-
ulations is compared with the analytical results (continuous lines) for the two values of
molecular diffusionD= 0.01 andD= 0.001. Due to the normalization, the values ofδL as
a function ofPeshould collapse into a single curve, which is exactly what Fig. 12 shows.

4.3.2. Spatial Distribution of the Species Density

Next, we examine the spatial distribution of the density field. Since we don’t know of
any analytical solution, we compare our method with a standard floating point calculation
based upon an explicit finite volume method.

The finite-volume code is based on the classical Patankar scheme [15]. In a nutshell,
the method is based on an explicit update of the generic scalar unknown8c located in the
center of cellÄc, via the advective (suffixA) and diffusive (suffixD) fluxes crossing the
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four boundaries of the cellÄc,

8c(t) = 1t

Vc

∑
n=0,4

(
CA

n + CD
n

)
8n(t −1t), (24)

whereVc=1x1y is the cell volume. Here8n denotes the scalar value in the center of the
cellÄn sharing thenth boundary withÄc. The subscript 0 labels the standing component
of the flux, the one that does not leave the cellÄc in the time lapse1t . As an example, the
coefficients of advective and diffusive fluxes crossing the east boundary (subscript 1) are
given byCA

1 = u11y andCD
1 = D1y/1x.

This method incorporates a (non-linearly) Peclet dependent flux limiter protecting against
negative densities induced by high local Peclet numbers. The specific form adopted in this
work is as follows:F A→ F̃ A=Max[0, F A] andDA→ D̃A= Da Max[0, (1− (Pe/10)5)].
Interestingly enough, this flux limiter was independently designed to cut-off atPe> 10,
which is pretty close to the limiting value emerging from our simulations (see previous
section). Positivity does not come for free, however, but only at the price of a non-zero
numerical diffusivity. The effects of such a diffusivity are well visible in the numerical
simulations, as we shall detail in what follows. The simulations were run on a 200× 50 grid
with the same set of parameters given earlier in this subsection. The flow speed isU0= 0.1
and the diffusivity isD= 0.001.

The initial condition for both species is shown in Figs. 13–14, reporting density contours
normalized to the background value of the majority species,b0.

FIG. 13. Digital density of species zero att = 0 (initial condition). Here and throughout, digital indicates the
results obtained with the interger Lax–Wendroff scheme.
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FIG. 14. Digital density of species one att = 0 (initial condition).

Under the (negligible) effects of molecular diffusion and hydrodynamic shear-driven
stretch, as time evolves, the initial circles are turned into a “boomerang shape.” This effect
is well visible in Figs. 15–16, which show the species densities after one recirculation
time (L/U0= 2000 time steps,L = 200 being the channel length). Note the change in the
color scale (the normalization staying the same throughout) which is introduced for merely
graphical purposes. Small ripples due to numerical dispersion are again visible.

After 2000 steps (one transit time), molecular diffusion (D= 0.001) should have little
effect as compared to hydrodynamic stretch. Indeed the effect of hydrodynamic stretch is
very apparent and looks quite similar for both the integer and floating-point calculation.
Diffusion is however higher for the finite-volume computation, as witnessed by the fact that
the inner core of the density pit (species zero) and bump (species one) is significantly less
diffuse for the integer calculation than for its floating-point counterpart (see Figs. 17–18).

Finally, we performed a very long time integration of 20,000 time steps corresponding
to 10 longitudinal transit times. Here, we expect physical diffusion to produce a visible
spreading effect in the integer simulation sinceDt/σ 2∼ 1. Such a diffusive effect is indeed
visible from Figs. 19–20 (note the change in scale with respect to the previous figures). We
observe that, unlike the case of uniform convection, this simulation did not develop any
significant Gibbs phenomena, as witnessed by the fact that no action from the underflow
control algorithm was ever requested in the course of the long simulation.

Before concluding, we give one word on computational performance. The integer and
floating-point code take about 40 and 15µs/step/site respectively on a Sparc1 computer.
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FIG. 15. Digital density of species zero att = 2000 (one transit time), forU = 0.1, D= 0.001.

FIG. 17. Floating-point density of species zero att = 2000 (one transit time), with the same parameters as
Figs. 15–16.
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FIG. 16. Digital density of species one att = 2000 (one transit time), forU = 0.1, D= 0.001.

FIG. 18. Floating-point density of species one att = 2000 (one transit time), with the same parameters as
Figs. 15–16.
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FIG. 19. Digital density of species zero att = 20000 (ten transit times) forU = 0.1, D= 0.001.

FIG. 20. Digital density of species one att = 20000 (ten transit times) forU = 0.1, D= 0.001.
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These figures are purely qualitative, for more than one reason. First, the language, C for
the integer and Fortran for the floating-point codes, is not the same; second, no specific
optimization efforts have been undertaken on either codes. Judging on mere operation
count, it is reasonable to expect that the integer and floating-point versions of the same
Lax–Wendroff algorithm would deliver essentially the same performance on a general
purpose computer.

This set of results provides satisfactory evidence that the species advection-diffusion
process is handled properly by the present integer Lax–Wendroff scheme. As already men-
tioned, while numerical diffusivity appears fairly well mastered, control of numerical dis-
persion calls for further refinements. This will be the subject of future research.

5. CONCLUSIONS

In this paper, we have presented an integer formulation of the Lax–Wendroff finite-
difference scheme for the transport of multicomponent flows. The scheme satisfies exact
integer particle conservation laws for each chemical component. This feature is highly
desirable in view of future applications involving chemical reactions with disparate time
scales, and also to perform long time simulations. Though particle density distribution
functions for each chemical component are all represented by integers, their ensemble
averaged property obeys the standard passive-scalar multi-component transport equation in
the large scale limit.

In the context of lattice gas and lattice Boltzmann simulations, the integer algorithm
developed here, where onlyonescalar variable is needed per species, achieves a significant
memory savings over the traditional method of dealing with multiple species in lattice
methods, which required the storage ofd different density components per each additional
species,d being the number of discrete directions on the underlying lattice.

Theoretical analysis shows that the algorithm yields negligible numerical diffusion at
relevant orders. It is also shown that it is stable under the fairly mild conditions we have
tested to date. Some benchmark cases have been analyzed with this algorithm, and the
accuracy compares favorably with standard floating-point numerical algorithms. In fact,
we find significantly reduced numerical diffusion for the integer scheme compared with
the floating-point code, although we make no claims as to the relation of this latter code to
current state-of-the-art. The algorithm is a simple and completely parallel numerical tool
that can be used to perform practical and efficient large-scale computations.

Work left for the future includes an additional procedure explicitly enforcing positivity
of the particle distribution functions at all times. Such a procedure must be constructed
via local dynamics in order to preserve the parallel feature of the algorithm, as well as to
prevent numerical diffusion effects. Most importantly, the present scheme needs be coupled
with a dynamic fluid solver so as to assess its robustness in situations where non-negligible
density gradients arise.

Investigations along these lines are under way.

APPENDIX: STABILITY ANALYSIS

For the sake of clarity and in order to focus attention on the essential physics, we analyze
the basic stability properties of the extended Lax system in the 2d single component case at
the critical situation with zero molecular diffusivity (i.e.,D= 0). In addition, to make the
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conclusion unambiguous, we present the analysis by ignoring flow field variations, so that
the system is essentially linear.

In 2d, Eq. (9) has the form

ρs(x, y, t +1t) =
(

1+ 2Ũx

4

)
ρs(x −1x, y, t)+

(
1− 2Ũx

4

)
ρs(x +1x, y, t)

+
(

1+ 2Ũy

4

)
ρs(x, y−1y, t)+

(
1− 2Ũy

4

)
ρs(x, y+1y, t)

+Dx[ρs(x +1x, y, t)− 2ρs(x, y, t)+ ρs(x −1x, y, t)]

+Dy[ρs(x, y+1y, t)− 2ρs(x, y, t)+ ρs(x, y−1y, t)]

− 1

4
Ũ xŨy[ρs(x −1x, y+1y, t)− ρs(x −1x, y−1y, t)

− ρs(x +1x, y+1y, t)+ ρs(x +1x, y−1y, t)], (25)

where now the diffusivities in the cartesian directions are

Dα = −1

4

(
1− 2Ũ2

α

)
.

Fourier transforming the variables from(x, t) to (k, ω), we obtain

e−iω =
(

1+ 2Ũx

4

)
e−ikx +

(
1− 2Ũx

4

)
eikx +

(
1+ 2Ũy

4

)
e−iky +

(
1− 2Ũy

4

)
eiky

+Dx[eikx − 2+ e−ikx ] + Dy[eiky − 2+ e−iky ]

+ 1

4
ŨxŨy(e

ikx − e−ikx )(eiky − e−iky). (26)

Separating the real and imaginary parts,ω = Ä+ i γ , the above equation results in

eγ cos(Ä) = 1

2
(cos(kx)+ cos(ky))+ 2Dx(cos(kx)− 1)

+ 2Dy(cos(ky)− 1)− Ũ xŨy sin(kx) sin(ky)

eγ sin(Ä) = Ũx sin(kx)+ Ũy sin(ky).

(27)

The equations can be expressed in a more compact form with new variables,

δ ≡ (δx, δy) ≡
(

1

2
+ 2Dx,

1

2
+ 2Dy

)
, (28)

c ≡ (cx, cy) ≡ (cos(kx), cos(ky)), (29)

s≡ (sx, sy) ≡ (sin(kx), sin(ky)), (30)

andŨ ≡ (Ũx, Ũy). Hence we can rewrite (27) as

eγ cos(Ä) = δ · (c− 1)+ 1− ŨxŨysxsy (31)

eγ sin(Ä) = Ũ · s, (32)
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where1≡ (1, 1). In order to investigate the stability properties of the system, we take the
square of (31) and (32) and add them together. We then arrive at the following equation
governing the imaginary part of the frequency,

e2γ = [δ · (c− 1)+ 1− ŨxŨysxsy]2+ (Ũ · s)2. (33)

Or equivalently,

e2γ − 1 = 2δ · (c− 1)+ [δ · (c− 1)]2− 2ŨxŨysxsy[δ · (c− 1)]

+ Ũ2
xŨ2

ys2
xs2

y + Ũ2
xs2

x + Ũ2
ys2

y. (34)

Stability is guaranteed ifγ ≤ 0, or equivalentlye2γ − 1≤ 0.
It is difficult to gain insight from this expression in general. Instead, we examine (34) in

order of wave numberk. Because

c− 1 =
(
−k2

x

2
+ k4

x

24
+ · · · ,−k2

y

2
+ k4

y

24
+ · · ·

)
,

s=
(

kx − k3
x

6
+ · · · , ky −

k3
y

6
+ · · ·

)
,

to O(k2) we have

e2γ − 1= (Ũ2
x − δx

)
k2

x +
(
Ũ2

y − δy
)
k2

y. (35)

Recall thatDα = − 1
4(1−2Ũ2

α), so we haveδα = Ũ2
α (see Eq. (28)). Hence the right-hand side

of (35) vanishes, which indicates there is no second order diffusion effect in the extended
Lax scheme, a desired result.

Next we look at the order ofO(k4). Stability is significantly enhanced if contributions
from this order provide a negative contribution to the right-hand side of (34).

Using the result of vanishingO(k2) from (35), and after some straightforward algebra,
we have

e2γ − 1 = −1

4
Ũ2

x
(
1− Ũ2

x
)
k4

x −−
1

4
Ũ2

y
(
1− Ũ2

y
)
k4

y+
3

2
Ũ2

xŨ2
yk2

xk2
y

+ ŨxŨykxky
(
Ũ2

xk2
x + Ũ2

yk2
y

)
. (36)

If we use the following readily deducible inequalities,

ŨxŨykxky ≤ 1

2

(
Ũ2

xk2
x + Ũ2

yk2
y

)
,

Ũ2
xŨ2

yk2
xk2

y ≤
1

2

(
Ũ4

xk4
x + Ũ4

yk4
y

)
,

we obtain

e2γ − 1≤ −1

4
Ũ2

x
(
1− 8Ũ2

x
)
k4

x −
1

4
Ũ2

y
(
1− 8Ũ2

y
)
k4

y. (37)
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Therefore, stability is indicated atO(k4) if the fluid velocity component obeys the condition

|Ũα| ≤ 1

2
√

2
≈ 0.35. (38)
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